CODE	TITLES	FIELD
IITPE-1	A Modified Single-Phase Transformerless Y-Source PV Grid-Connected Inverter	
IITPE-2	An Improved H5 Topology with Low Common-mode Current for Transformerless PV Grid-connected Inverter	
IITPE-3	A Grid-Connected Single-Phase Transformerless Inverter Controlling Two Solar PV Arrays Operating Under Different Atmospheric Conditions	
IITPE-4	A Buck and Boost Based Grid Connected PV Inverter Maximizing Power Yield From Two PV Arrays in Mismatched Environmental Conditions	
IITPE-5	Design and implementation of single-phase inverter without transformer for PV applications	
IITPE-6	A Transformer less Single-Phase Symmetrical Z Source HERIC Inverter with Reduced Leakage Currents for PV Systems	S
IITPE-7	A Distributed Power Control of Series-Connected Module-Integrated Inverters for PV Grid-Tied Applications	:019 CATION
IITPE-8	An Improved Hybrid Modulation Method for the Single-Phase H6 Inverter With Reactive Power Compensation	2018 - 2 () APPLI
IITPE-9	A Three-Phase Grid-Connected Microinverter for AC Photovoltaic Module Applications	IEEE- /(Solar
IITPE-10	H8 Inverter to Reduce Leakage Current in Transformer less Three-Phase Grid-Connected Photovoltaic systems	М
IITPE-11	Modified Single-Phase Single-Stage Grid-Tied Flying Inductor Inverter With MPPT and Suppressed Leakage Current	
IITPE-12	High-Efficiency Two-Stage Three-Level Grid-Connected Photovoltaic Inverter	
IITPE-13	Three-Phase Quasi-Z-Source Inverter With Constant Common-Mode Voltage for Photovoltaic Application	
IITPE-14	Integrated DC–DC Converter Based Grid-Connected Transformerless Photovoltaic Inverter With Extended Input Voltage Range	
IITPE-15	Implementation of a Grid-Integrated PV-Battery System for Residential and Electrical Vehicle Applications	

CODE	TOPICS	FIELD
IITPE-16	A Hybrid Resonant ZVZCS Three-Level Converter for MVDC-Connected Offshore Wind Power Collection Systems	
IITPE-17	Hybrid ANFIS-GA-based control scheme for performance enhancement of a grid-connected wind generator	
IITPE-18	Low Dissipative Snubber Using Flyback-Type Transformer for Wind Turbine Systems	
IITPE-19	Power electronic interface with de-coupled control for wind-driven PMSG feeding utility grid and DC load	
IITPE-20	Reliability Improvement for a High-Power IGBT in Wind Energy Applications	Σ
IITPE-21	Reducing Harmonic Instability and Resonance Problems in PMSG-Based Wind Farms	V SYSTE
IITPE-22	Design and Implementation of Active Power Control With Improved P&O Method for Wind-PV-Battery-Based Standalone Generation System	9 STEM, P
IITPE-23	Proposal of a Photovoltaic AC-Module With a Single Stage Transformerless Grid-Connected Boost Microinverter	18 -2019
IITPE-24	Leakage Current Suppression of Three-Phase Flying Capacitor PV Inverter With New Carrier Modulation and Logic Function	IEEE-20: DNVERS
IITPE-25	Control and operation of a solar PV-battery-grid-tied system in fixed and variable power mode	ERGY C
IITPE-26	Real-time implementation of optimal operation of single-stage grid interfaced PV system under weak grid conditions	/IND EN
IITPE-27	Power management in PV-battery-hydro based standalone microgrid	5
IITPE-28	Multifunctional Three-Phase Four-Leg PV-SVSI With Dynamic Capacity Distribution Method	
IITPE-29	PV Battery Charger Using an L3C Resonant Converter for Electric Vehicle Applications	
IITPE-30	MPPT Method for PV Systems Under Partially Shaded Conditions by Approximating I–V Curve	
IITPE-31	A Single-Phase Asymmetrical T-Type Five-Level Transformerless PV Inverter	

CODE	TOPICS	FIELD
IITPE-32	Fuzzy Logic-Based Energy Management System Design for Residential Grid- Connected Microgrids	
IITPE-34	Isolated Single Stage Bidirectional AC-DC converter with power decoupling and reactive power control to interface battery with the single phase grid	
IITPE-35	Soft-switched Non-Isolated High Step-up Three-port DC-DC converter for Hybrid Energy Systems	
IITPE-36	Frequency Division Based Coordinated Control of Three-Port Converter Interfaced Hybrid Energy Storage Systems in Autonomous DC Microgrids	
IITPE-37	A Uniform Control Strategy for the Interlinking Converter in Hierarchical Controlled Hybrid AC/DC Microgrids	RT GRID
IITPE-38	A Battery/Ultracapacitor Hybrid Energy Storage System for Implementing the Power Management of Virtual Synchronous Generators	T,SMAI
IITPE-39	Supervisory Power Quality Control Scheme for a Grid-Off Microgrid	E, WF
IITPE-40	Hybrid Energy Storage System Microgrids Integration for Power Quality Improvement Using Four-Leg Three-Level NPC Inverter and Second-Order Sliding Mode Control)18 - 2019 ЗҮ STORAG
IITPE-41	A New Controller for Bidirectional Wireless Power Transfer Systems	EEE-20 ENER(
IITPE-42	Implementation of the Constant Current and Constant Voltage Charge of Inductive Power Transfer Systems with the Double-Sided LCC Compensation Topology for Electric Vehicle Battery Charge Applications	EMS AND
IITPE-43	High Power Density Z-Source Resonant Wireless Charger with Line Frequency Sinusoidal Charging	RID SYST
IITPE-44	Single-Stage Wireless-Power-Transfer Resonant Converter With Boost Bridgeless Power-Factor-Correction Rectifier	НҮВР
IITPE-45	Hybrid Control of High-Efficient Resonant Converter for Renewable Energy System	
IITPE-46	Micro-inverter based on single-ended primary-inductance converter topology with an active clamp power decoupling	
IITPE-47	Modular soft-switching converter in DC micro-grid system applications	
IITPE-48	Droop control strategy of the AC/DC hybrid micro-grid based on quasi-PR control	

CODE	TOPICS	FIELD
IITPE-49	Quasi-Z-Source Indirect Matrix Converter Fed Induction Motor Drive for Flow Control of Dye in Paper Mill	
IITPE-50	BLDC Motor Drive Based on Bridgeless Landsman PFC Converter With Single Sensor and Reduced Stress on Power Devices	
IITPE-51	DC-Link Capacitor-Current Ripple Reduction in DPWM-Based Back-to-Back Converters	
IITPE-52	A Single-Stage Sensorless Control of a PV based Bore-Well Submersible BLDC Motor	
IITPE-53	Improved Finite Control-Set Model-Based Direct Power Control of BLDC Motor with Reduced Torque Ripple	EHICLE
IITPE-54	High-Precision Sensorless Drive for High-Speed BLDC Motors Based on the Virtual Third Harmonic Back-EMF	TRIC VE
IITPE-55	Commutation Torque Ripple Reduction in the BLDC Motor Using Modified SEPIC and Three-Level NPC Inverter	ER, ELEC
IITPE-56	Improved Modulation Strategy Using Dual Phase Shift Modulation for Active Commutated Current-Fed Dual Active Bridge	E 2018 ONVERTI
IITPE-57	A Switched-Capacitor Bidirectional DC-DC Converter with Wide Voltage	IEF AL C
	Gain Range for Electric Vehicles with Hybrid Energy Sources	CTION
IITPE-58	A Common Ground Switched-Quasi-Z-Source Bidirectional DC–DC Converter With Wide-Voltage-Gain Range for EVs With Hybrid Energy Sources	BI DIRE
IITPE-59	A Quadruple Active Bridge Converter for the Storage Integration on the More Electric Aircraft	RIVES, I
IITPE-60	On an Electric Scooter With G2V/V2H/V2G and Energy Harvesting	Δ
	Functions	
IITPE-61	PV Battery Charger Using an L3C Resonant Converter for Electric Vehicle Applications	
IITPE-62	High Efficiency Bridgeless Single-Power-Conversion Battery Charger for Light Electric Vehicles	
IITPE-63	A PWM LLC Type Resonant Converter Adapted to Wide Output Range in PEV Charging Applications.	

CODE	TOPICS	FIELD
IITPE-64	Plug-in Hybrid Electric Vehicles (PHEVs): Replacing Internal Combustion	
	Engine with Clean and Renewable Energy Based Auxiliary Power Sources	
IITPE-65	Implementation of a Grid-Integrated PV-Battery System for Residential and	
	Electrical Vehicle Applications	~
IITPE-66	Modeling, Design, Control, and Implementation of a Modified Z-Source	RTE
	Integrated PV/Grid/EV DC Charger/Inverter	19 DNVE
IITPE-67	Isolated SEPIC DC–DC Converter With Ripple-Free Input Current and Lossless Snubber	18 - 201 SEPIC CO
IITPE-68	A High Performance Impedance-Source Converter with Switched Inductor	EE 20 AND (
IITPE-69	High Step-Up Quasi-Z Source DC-DC Converter	IE
IITPE-70	Study on A High Voltage Gain SEPIC-Based DC-DC Converter with Continuous Input Current for Sustainable Energy Applications	z so
IITPE-71	Single-Phase Hybrid Switched-Capacitor Voltage-Doubler SEPIC PFC Rectifiers	
IITPE-72	Hybrid Switched-Capacitor/Switched-Quasi-Z-Source Bidirectional DC-DC Converter With Wide-Voltage-Gain Range for Hybrid Energy Sources EVs	
IITPE-73	Zero-Voltage and Zero-Current Switching PWM DC–DC Converter Using Controlled Secondary Rectifier With One Active Switch and Non dissipative Turn-Off Snubber	E OP
IITPE-74	Hybrid Control of Single-Inductor Multiple-Output Converters	лгтр
IITPE-75	Analysis and Design of an Input-Series Two-Transistor Forward Converter For High-Input Voltage Multiple-Output Applications	8 - 2019 ANG ML
IITPE-76	An Independently Controlled Single-PWM Multiple-Output Narrow-Band Resonant Converter	IEEE201 CHING
IITPE-77	A Hybrid Resonant ZCS PWM Converter for Renewable Energy Sources Connecting to MVDC Collection System	FT SWI1
IITPE-78	A New ZVS Full-Bridge DC–DC Converter for Battery Charging With Reduced Losses Over Full-Load Range	SO

CODE	TOPICS	FIELD
IITPE-79	Interleaved-Input Series-Output Ultra High Voltage Gain DC-DC Converter	
IITPE-80	Advanced Digital Controller for Improving Input Current Quality of Integrated Active Virtual Ground-Bridgeless PFC	
IITPE-81	Multitrack Power Factor Correction Architecture	
IITPE-82	Family of ZVT Interleaved Converters With Low Number of Components	
IITPE-83	Combined Multilevel and Two-Phase Interleaved LLC Converter With Enhanced Power Processing Characteristics and Natural Current Sharing	
IITPE-84	Interleaved Current-Driven Phase-Shift Full-Bridge Converter With Magnetic Integration and Voltage Doubler Rectifiers	OLTAGE
IITPE-85	New Bridgeless Buck PFC Converter with Improved Input Current and Power Factor	л нын
IITPE-86	A Wide-Input-Range High-Efficiency Step-down Power Factor Correction Converter Using Variable Frequency Multiplier Technique	2019 /erter,
IITPE-87	Improvement of Power-Conversion Efficiency of AC–DC Boost Converter Using 1:1 Transformer	2018 -2 D CONV
IITPE-88	High Step-Up DC–DC Converter with Active Soft-Switching and Voltage Clamping for Renewable Energy Systems	IEEE RLEAVE
IITPE-90	High-Efficiency High Step-Up DC–DC Converter With Dual Coupled Inductors for Grid-Connected Photovoltaic Systems	ND INTE
IITPE-91	High Step-Up Resonant DC–DC Converter With Ripple-Free Input Current for Renewable Energy Systems	PFC AN
IITPE-92	Analysis and Design of High-Efficiency Hybrid High Step-Up DC-DC Converter for Distributed PV Generation Systems	
IITPE-93	Voltage-Lift Technique Based Non isolated Boost DC–DC Converter: Analysis and Design	
IITPE-94	High Step-Up Coupled-Inductor Cascade Boost DC–DC Converter With Lossless Passive Snubber	
IITPE-95	Synthesis and Comparative Analysis of Very High Step-Up DC–DC Converters Adopting Coupled-Inductor and Voltage Multiplier Cells	

CODE	TOPICS	FIELD
IITPE-96	Nonisolated Harmonics-Boosted Resonant DC/DC Converter With High- Step-Up Gain	
IITPE-97	Modified High-Efficiency LLC Converters With Two Split Resonant Branches for Wide Input-Voltage Range Applications	
IITPE-98	A Voltage Quadrupler Rectifier Based Pulse–Width–Modulated LLC Converter with Wide Output Range	
IITPE-99	Dynamic Modeling and Controller Design of Dual-Mode Cuk Inverter in Grid-Connected PV/TE Applications	ERTERS
IITPE-100	Improved Power Quality Switched Inductor Cuk Converter for Battery Charging Application	ER , INV
IITPE-101	Isolated Bidirectional DC–DC Converter with Quasi-Resonant Zero-Voltage Switching for Battery Charge Equalization	INVERT
IITPE-102	Photovoltaic AC Module Based on a Cuk Converter with a Switched-Inductor Structure	2019 IANT CC
IITPE-103	An AC–DC LED Driver with an Additional Active Rectifier and a Unidirectional Auxiliary Circuit for AC Power Ripple Isolation	2018 - 2 RESON
IITPE-104	Loss Analysis for Efficiency Improvement of the Integrated Buck-Flyback LED Driver	ieee Uk and
IITPE-105	A PFC Single-Coupled-Inductor Multiple-Output LED Driver without Electrolytic Capacitor	IONS , C
IITPE-106	A Single-Stage Integrated Boost-LLC AC-DC Converter with Quasi-Constant Bus Voltage for Multi-channel LED Street-Lighting Applications	PLICATI
IITPE-107	A Single-Phase Single-Stage Switched-Boost Inverter With Four Switches	ED AP
IITPE-108	Decentralized Control for Fully Modular Input-Series Output-Parallel (ISOP) Inverter System Based on the Active Power Inverse-Droop Method	
IITPE-109	Buck–Boost Dual-Leg-Integrated Step-Up Inverter With Low THD and Single Variable Control for Single-Phase High-Frequency AC Microgrids	
IITPE-110	Performance Evaluation of the Single-Phase Split-Source Inverter Using an Alternative DC–AC Configuration	

CODE	TOPICS	FIELD
IITPE-111	An Isolated Multi-Input ZCS DC–DC Front-End-Converter Based Multilevel Inverter for the Integration of Renewable Energy Sources	ERS
IITPE-112	A 5-level High Efficiency Low Cost Hybrid Neutral Point Clamped Transformerless Inverter for Grid Connected Photovoltaic Application	019 INVERT
IITPE-113	A Novel Step-Up Single Source Multilevel Inverter: Topology, Operating Principle and Modulation	2018 - 2 TILEVEL
IITPE-114	A Switched-Capacitor-Based Multilevel Inverter Topology With Reduced Components	MUL
IITPE-115	Multi-Input Switched-Capacitor Multilevel Inverter for High-Frequency AC Power Distribution	